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Abstract. In this paper, we apply a partial augmented Lagrangian method to mathemati-
cal programs with complementarity constraints (MPCC). Specifically, only the complemen-
tarity constraints are incorporated into the objective function of the augmented Lagrangian
problem while the other constraints of the original MPCC are retained as constraints in the
augmented Lagrangian problem. We show that the limit point of a sequence of points that
satisfy second-order necessary conditions of the partial augmented Lagrangian problems is
a strongly stationary point (hence a B-stationary point) of the original MPCC if the limit
point is feasible to MPCC, the linear independence constraint qualification for MPCC and
the upper level strict complementarity condition hold at the limit point. Furthermore, this
limit point also satisfies a second-order necessary optimality condition of MPCC. Numerical
experiments are done to test the computational performances of several methods for MPCC
proposed in the literature.
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1. Introduction

Consider the following mathematical program with complementarity con-
straints (MPCC):

min
z∈Rn

f (z)

s.t. Gi(z)�0, Hi(z)�0, Gi(z)Hi(z)=0, i =1, . . . , p,

gj (z)�0, j ∈J1,

gj (z)=0, j ∈J2,
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nov on the occassion of his 65th birthday.
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where f,Gi,Hi, gj : Rn →R1 are all twice continuously differentiable func-
tions and J1 and J2 are both finite index sets.

It is known that a mathematical program with equilibrium constraints,
which has wide applications in economics and engineering, can be con-
verted into a MPCC problem (see, e.g. [18]). Many authors have studied
MPCC. For a comprehensive and in-depth theoretical study of MPCC, we
refer the reader to [11, 23, 26, 27] and the references therein. On the other
hand, the development of various algorithms for mathematical programs
with equilibrium constraints, variational inequality constraints or comple-
mentarity constraints can be found in [6,9,10,12–15,17,20,21,24,25] and the
references therein.

The augmented Lagrangian method is popular and effective for solving
constrained optimization problems (see, e.g. [2]). However, for some con-
strained optimization problems, it may be more advantageous to employ a
partial augmented Lagrangian method, namely, only those constraint func-
tions which are hard to handle will be incorporated into the objective func-
tion of the augmented Lagrangian problem while the remaining constraints
will be retained explicitly (see, e.g. [2–4,7,8,19]).

Complementarity constraints in MPCC are known to be difficult to
treat. In this paper, we shall apply a partial augmented Lagrangian method
directly to MPCC. Specifically, only the complementarity constraints are
incorporated into the objective function of the augmented Lagrangian
problem while the other constraints of the original MPCC are retained as
constraints in the augmented Lagrangian problem. We show that the limit
point of a sequence of points that satisfy second-order necessary condi-
tions of the partial augmented Lagrangian problems is a strongly station-
ary point (hence a B-stationary point) of the original MPCC if the limit
point is feasible to MPCC, the linear independence constraint qualification
for MPCC and the upper level strict complementarity condition hold at the
limit point. Furthermore, this limit point also satisfies a second-order nec-
essary optimality condition of MPCC. Numerical experiments will be done
to test the computational performances of several methods for MPCC pro-
posed in [10, 13, 14, 24] and this paper.

Denote by Z0 the feasible set of MPCC, i.e.,

Z0 ={z∈Rn :Gi(z)�0,Hi(z)�0,Gi(z)Hi(z)=0, i =1, . . . , p,

gj (z)�0, j ∈J1, gj (z)=0, j ∈J2}.
Throughout the paper, we assume that Z0 �=∅. Let z∈Rn. Define

I 1(z)={i ∈{1, . . . , p} :Gi(z)=0,Hi(z)>0},
I 2(z)={i ∈{1, . . . , p} :Gi(z)>0,Hi(z)=0},
I 3(z)={i ∈{1, . . . , p} :Gi(z)=0,Hi(z)=0},
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I c(z)={1, . . . , p}\ [
I 1(z)∪ I 2(z)∪ I 3(z)

]
,

J1(z)={j ∈J1 :gj (z)=0}.

Now we give some definitions concerning the first-order and second-
order necessary optimality conditions of MPCC.

DEFINITION 1.1 [10]. Let z̄ ∈ Z0. We say that the linear independence
constraint qualification (LICQ) for MPCC holds at z̄ if

{�Gi(z̄) : i ∈ I 1(z̄)∪ I 3(z̄)}∪ {�Hi(z̄) : i ∈ I 2(z̄)∪ I 3(z̄)}
∪{�gj (z̄) : j ∈J1(z̄)}∪ {�gj (z̄) : j ∈J2}

are linearly independent.

DEFINITION 1.2 [26]. Let z̄ ∈ Z0. We say that z̄ is a strongly stationary
point of MPCC if the following conditions hold at z̄:

�f (z̄)+
∑

i∈I 1(z̄)

vi �Gi(z̄)+
∑

i∈I 2(z̄)

wi �Hi(z̄)+
∑

i∈I 3(z̄)

(vi �Gi(z̄)+wi �Hi(z̄))

+
∑

j∈J1(z̄)

µj �gj (z̄)+
∑

j∈J2

νj �gj (z̄)=0,

vi,wi �0, i ∈ I 3(z̄), (1)

µj �0, j ∈J1(z̄). (2)

DEFINITION 1.3 [1]. Let z̄∈Z0. The contingent tangent cone of Z0 at z̄

is defined as

TZ0(z̄)=
{
d ∈Rn :∃tk ↓0 and zk ∈Z0 such that lim

k→+∞
zk − z̄

t k
=d

}
.

DEFINITION 1.4 [18]. Let z̄ ∈ Z0. z̄ is called a B-stationary point of
MPCC if

�f (z̄)T d �0, ∀d ∈TZ0(z̄).

Here we use the definition of a B-stationary point given in [18]. Another
definition of a B-stationary point was given in [26]. Obviously, a B-sta-
tionary point in the sense of [26] is a B-stationary point in [18]. More-
over, it is clear from [26] that a strongly stationary point of MPCC is a
B-stationary point in the sense of [26], hence a B-stationary point in [18].
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However, all these three concepts of stationarity are equivalent if LICQ for
MPCC holds at z̄∈Z0.

It is clear from [26] that if z̄ is a local minimum of MPCC and LICQ
for MPCC holds at z̄, then z̄ is a strongly stationary point of MPCC, and
hence a B-stationary point.

DEFINITION 1.5 [14]. Let z̄ ∈ Z0. We say that a second-order condition
of MPCC is satisfied at z̄ if z̄ is strongly stationary point, i.e. (1) and (2)
holds, and for every vector d ∈Rn such that

�Gi(z̄)
T d =0, i ∈ I 1(z̄),

�Hi(z̄)
T d =0, i ∈ I 2(z̄),

�Gi(z̄)
T d =0, i ∈ I 3(z̄),

�Hi(z̄)
T d =0, i ∈ I 3(z̄),

�gj (z̄)
T d =0, j ∈J1(z̄),

�gj (z̄)
T d =0, j ∈J2, (3)

there holds

dT

⎡

⎣�2f (z̄)+
∑

i∈I 1(z̄)

vi �2Gi(z̄)+
∑

i∈I 2(z̄)

wi �2Hi(z̄)

+
∑

i∈I 3(z̄)

(vi �2Gi(z̄)+wi �2Hi(z̄))

+
∑

j∈J1(z̄)

µj �2gj (z̄)+
q∑

j∈J2

µj �2gj (z̄)

⎤

⎦d �0. (4)

DEFINITION 1.6 [24]. Let z̄ ∈ Z0. Assume that (1) holds. We say that
upper level strict complementarity condition (ULSC) holds at z̄ if viwi �=0,

∀i ∈ I 3
2 (z̄).

2. A Partial Augmented Lagrangian Method for MPCC

Consider the following partial augmented Lagrangian problem (P (y, r)):

min L(z, y, r)

s.t. Gi(z)�0, Hi(z)�0, i =1, . . . , p,

gj (z)�0, j ∈J1,

gj (z)=0, j ∈J2,
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where

L(z, y, r)=f (z)+
p∑

i=1

yiGi(z)Hi(z)+ r/2
p∑

i=1

[Gi(z)Hi(z)]
2 ,

z∈Rn, y ∈Rp, r >0.

It is routine to derive the following necessary conditions for a local min-
imum of (P (y, r)).

PROPOSITION 2.1 Let z̄ be a local optimal solution of (P (y, r)). Sup-
pose that the following condition (C) holds:

{�Gi(z̄) : i ∈ I 1(z̄)∪ I 3(z̄)
}∪{�Hi(z̄) : i ∈ I 2(z̄)∪ I 3(z̄)

}∪
{�gj (z̄) : j ∈J1(z̄)∪J2

}

are linearly independent.

Then, the following first-order necessary condition holds:
there exist vi � 0, i ∈ I 1(z̄) ∪ I 3(z̄), wi � 0, i ∈ I 2(z̄) ∪ I 3(z̄), µj � 0, j ∈ J1(z̄)

and µj, j ∈J2 such that

�f (z̄)+
∑

i∈I c(z̄)

[Hi(z̄)(yi + rGi(z̄)Hi(z̄))]�Gi(z̄)

+
∑

i∈I c(z̄)

[Gi(z̄)(yi + rGi(z̄)Hi(z̄))]�Hi(z̄)

+
∑

i∈I 1(z̄)∪I 3(z̄)

[
yiHi(z̄)+ rGi(z̄)H

2
i (z̄)+vi

]�Gi(z̄)

+
∑

i∈I 2(z̄)∪I 3(z̄)

[
yiGi(z̄)+ rHi(z̄)G

2
i (z̄)+wi

]�Hi(z̄)

+
∑

j∈J1(z̄)∪J2

µj �gj (z̄)=0 (5)

and the second-order necessary condition holds:
the first-order condition holds and for any d ∈Rn satisfying

�Gi(z̄)
T d =0, i ∈ I 1(z̄),

�Hi(z̄)
T d =0, i ∈ I 2(z̄),

�Gi(z̄)
T d =0, i ∈ I 3(z̄),

�Hi(z̄)
T d =0, i ∈ I 3(z̄),

�gj (z̄)
T d =0, j ∈J1(z̄)∪J2, (6)
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there holds

dT �2 f (z̄)d +
∑

i∈I c(z̄)

[Hi(z̄)(yi + rGi(z̄)Hi(z̄))]dT �2 Gi(z̄)d

+
∑

i∈I c(z̄)

[Gi(z̄)(yi + rGi(z̄)Hi(z̄))]dT �2 Hi(z̄)d

+
∑

i∈I 1(z̄)∪I 3(z̄)

[
yiHi(z̄)+ rGi(z̄)H

2
i (z̄)+vi

]
dT �2 Gi(z̄)d

+
∑

i∈I 2(z̄)∪I 3(z̄)

[
yiGi(z̄)+ rHi(z̄)G

2
i (z̄)+wi

]
dT �2 Hi(z̄)d

+
∑

j∈J1(z̄)∪J2

µjd
T �2 gj (z̄)d

+2
p∑

i=1

(yi + rGi(z̄)Hi(z̄))(�Gi(z̄)d)(�Hi(z̄)d)

+r

p∑

i=1

[Hi(z̄)(�Gi(z̄)d)+Gi(z̄)(�Hi(z̄)d)]2 �0. (7)

3. Convergence Results

THEOREM 3.1 Suppose that {yk} ⊆ Rp is a bounded sequence and 0 <

rk →+∞. Let each z̄k be feasible to (P (yk, rk)) and satisfy the first-order
necessary optimality condition of (P (yk, rk)). Assume that there exists a
real number M such that

L(z̄k, y
k, rk)�M, ∀k. (8)

Suppose that z̄ is a limit point of {z̄k}. Then z̄ is feasible to the original
MPCC. Futhermore, if the LICQ for MPCC holds at z̄, then there exist
v̄i , i ∈ I 1(z̄)∪ I 3(z̄), w̄i, i ∈ I 2(z̄)∪ I 3(z̄), µ̄j �0, j ∈J1(z̄), µ̄j , j ∈J2 such that

�f (z̄)+
∑

i∈I 1(z̄)

v̄i �Gi(z̄)+
∑

i∈I 2(z̄)

w̄i �Hi(z̄)

+
∑

i∈I 3(z̄)

(v̄i �Gi(z̄)+ w̄i �Hi(z̄))

+
∑

j∈J1(z̄)∪J2

µ̄j �gj (z̄)=0. (9)



PARTIAL AUGMENTED LAGRANGIAN METHOD 241

Proof. Assume without loss of generality that z̄k → z̄ as k →+∞. Since
each z̄k is feasible to (P (yk, rk)), we have

Gi(z̄k)�0, Hi(z̄k)�0, i =1, . . . , p,

gj (z̄k)�0, j ∈J1,

gj (z̄k)=0, j ∈J2.

Passing to the limit as k →+∞, we get

Gi(z̄)�0, Hi(z̄)�0, i =1, . . . , p,

gj (z̄)�0, j ∈J1, (10)

gj (z̄)=0, j ∈J2.

Furthermore, from the boundedness of {yk}, (8) and the fact that z̄k → z̄,
we see that there exists M ′ >0 such that

rk/2
p∑

i=1

G2
i (z̄k)H

2
i (z̄k)�M ′,

i.e.,

p∑

i=1

G2
i (z̄k)H

2
i (z̄k)�2M ′/rk.

Passing to the limit as k →+∞, we have

p∑

i=1

G2
i (z̄)H

2
i (z̄)=0.

Namely,

Gi(z̄)Hi(z̄)=0, i =1, . . . , p.

This combined with (11) yields that z̄ ∈ Z0. That is, z̄ is feasible to
MPCC. As each z̄k satisfies the first-order necessary optimality condition
of (P (yk, rk)), we have vk

i � 0, i ∈ I 1(z̄k) ∪ I 3(z̄k), wk
i � 0, i ∈ I 2(z̄k) ∪ I 3(z̄k),

µk
j �0, j ∈J1(z̄k) and µk

j , j ∈J2 such that

�f (z̄k)+
∑

i∈I c(z̄k)

[
Hi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k))

]�Gi(z̄k)

+
∑

i∈I c(z̄k)

[
Gi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k))

]�Hi(z̄k)
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+
∑

i∈I 1(z̄k)
⋃

I 3(z̄k)

[
yk

i Hi(z̄k)+ rkGi(z̄k)H
2
i (z̄k)+vk

i

]�Gi(z̄k)

+
∑

i∈I 2(z̄k)
⋃

I 3(z̄k)

[
yk

i Gi(z̄k)+ rkHi(z̄k)G
2
i (z̄k)+wk

i

]�Hi(z̄k)

+
∑

j∈J1(z̄k)
⋃

J2

µk
j �gj (z̄k)=0. (11)

Let

v̄k
i =Hi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k)), i ∈ I c(z̄k),

w̄k
i =Gi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k)), i ∈ I c(z̄k),

v̄k
i =Hi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k))+vk

i , i ∈ I 1(z̄k)∪ I 3(z̄k),

w̄k
i =0, i ∈ I 1(z̄k),

v̄k
i =0, i ∈ I 2(z̄k), (12)

w̄k
i =Gi(z̄k)(y

k
i + rkGi(z̄k)Hi(z̄k))+wk

i , i ∈ I 2(z̄k)∪ I 3(z̄k),

µ̄k
j =µk

j �0, j ∈J1(z̄k),

µ̄k
j =0, j ∈J1(z̄)\J1(z̄k),

µ̄k
j =µk

j , j ∈J2.

Obviously, we can assume without loss of generality that

J1(z̄k)⊆J1(z̄), ∀k. (13)

Substituting (13) into (11) while observing (13), we have

�f (z̄k)+
p∑

i=1

(v̄k
i �Gi(z̄k)+ w̄k

i �Hi(z̄k))+
∑

j∈J1(z̄)

µ̄k
j �gj (z̄k)

+
∑

j∈J2

µ̄k
j �gj (z̄k)=0. (14)

Let

τk =
p∑

i=1

(|v̄k
i |+ |w̄k

i |)+
∑

j∈J1(z̄)

µ̄k
j +

∑

j∈J2

|µ̄k
j |.

We show by contradiction that {τk} is bounded. Otherwise, we assume,
without loss of generality, that τk →+∞ and

v̄k
i /τk → v̄′

i , i =1, . . . , p,

w̄k
i /τk → w̄′

i , i =1, . . . , p,
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µ̄k
j /τk → µ̄′

j �0, j ∈J1(z̄),

µ̄k
j /τk → µ̄′

j , j ∈J2. (15)

Dividing (14) by τk and passing to the limit as k →+∞, we have

p∑

i=1

(v̄′
i �Gi(z̄)+ w̄′

i �Hi(z̄))+
∑

j∈J1(z̄)∪J2

µ̄′
j �gj (z̄)=0. (16)

Moreover, we have

p∑

i=1

(|v̄′
i |+ |w̄′

i |)+
∑

j∈J1(z̄)

µ̄′
j +

∑

j∈J2

|µ̄′
j |=1. (17)

We show that

w̄′
i =0, i ∈ I 1(z̄) (18)

and

v′
i =0, i ∈ I 2(z̄). (19)

We prove only (18) and (19) can be analogously proved. Suppose that i ∈
I 1(z̄). Then from (13) and the fact that z̄k → z̄, we deduce that i ∈ I 1(z̄k) or
i ∈ I c(z̄k) when k is sufficiently large. Consider the following two cases.

(i) There exist infinitely many k’s such that i ∈ I 1(z̄k).
(ii) i ∈ I c(z̄k), k �k0 for some k0 >0.

If case (i) is true, we assume without loss of generality that i ∈I 1(z̄k), k�
k1 for some k1 >0. As a result,

w̄′
i = lim

k→+∞
w̄k

i

τk

= lim
k→+∞

0=0.

Thus (18) holds. If case (ii) is true, then

|w̄′
i |= lim

k→+∞

∣∣
∣∣
w̄k

i

τk

∣∣
∣∣� lim

k→+∞

∣∣
∣∣
w̄k

i

v̄k
i

∣∣
∣∣= lim

k→+∞
Gi(z̄k)

Hi(z̄k)
=0,

i.e. (18) holds.
Substituting (18) and (19) into (16) and (17), we obtain

∑

i∈I 1(z̄)

v̄′
i �Gi(z̄)+

∑

i∈I 2(z̄)

w̄′
i �Hi(z̄)+

∑

i∈I 3(z̄)

(v̄′
i �Gi(z̄)+ w̄′

i �Hi(z̄))

+
∑

j∈J1(z̄)
⋃

J2

µ̄′
j �gj (z̄)=0 (20)
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and
∑

i∈I 1(z̄)

|v̄′
i |+

∑

i∈I 2(z̄)

|w̄′
i |+

∑

i∈I 3(z̄)

(|v̄′
i |+ |w̄′

i |)+
∑

j∈J1(z̄)

µ̄′
j +

∑

j∈J2

|µ̄′
j |=1. (21)

The combination of (20) and (21) contradicts the LICQ for MPCC at z̄.
Hence, {τk} is bounded. Consequently, we can assume without loss of gen-
erality that

v̄k
i → v̄i , i =1, . . . , p,

w̄k
i → w̄i, i =1, . . . , p,

µ̄k
j → µ̄j �0, j ∈J1(z̄),

µ̄k
j → µ̄j , j ∈J2.

(22)

Taking the limit in (14) as k →+∞, we get

�f (z̄)+
p∑

i=1

(v̄i �Gi(z̄)+ w̄i �Hi(z̄))+
∑

j∈J1(z̄)∪J2

µ̄j �gj (z̄)=0. (23)

Now we show that

w̄i =0, i ∈ I 1(z̄) (24)

and

v̄i =0, i ∈ I 2(z̄). (25)

We need only to prove (24) since (25) can be similarly proved. As
limk→+∞ v̄k

i = v̄i and limk→+∞ Hi(z̄k)=Hi(z̄), it follows from (13) that

lim
k→+∞

(
yk

i + rkGi(z̄k)Hi(z̄k)
)= lim

k→+∞
v̄k

i

Hi(z̄k)
= v̄i

Hi(z̄)
.

Hence,

w̄i = lim
k→+∞

Gi(z̄k)
(
yk

i + rkGi(z̄k)Hi(z̄k)
)=Gi(z̄) · v̄i

Hi(z̄)
=0.

Substituting (24) and (25) into (23), we obtain (9) and the proof is com-
plete.

We need the next lemma to prove further convergence results.
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LEMMA 3.1 Let {ck
i }∞k=1 ⊆Rn, i =1, . . . , s be sequences such that

lim
k→+∞

ck
i = ci, i =1, . . . , s.

Suppose that {ci : i = 1, . . . , s} are linearly independent. Then ∀d̄ ∈ {d ∈Rn :
cT
i d = 0, i = 1, . . . , s}, there exists k̄ > 0 such that, when k � k̄, there exists

dk ∈Rn satisfying ck
i d

k =0, i =1, . . . , s and dk → d̄.

Proof. It follows directly from ([5], Corollary II.3.4) (see also ([31],
Lemma 5.1).

THEOREM 3.2 Let the assumptions of Theorem 3.1 hold. Further assume
that the ULSC holds at z̄ and the second-order necessary condition of
(P (yk, rk)) holds at z̄k (see Proposition 2.1). Then z̄ is a strongly station-
ary point of MPCC. Moreover, the second-order condition (in Definition
1.5) of MPCC also holds at z̄.

Proof. First we prove that z̄ is a strongly stationary point of MPCC.
Suppose to the contrary that there exists i∗ ∈ I 3(z̄) such that v̄i∗ >0. Then,
by the ULSC condition, we deduce that w̄i∗ �= 0. From (11), (13) and the
fact that vk

i � 0, i ∈ I 1(z̄k)∪ I 3(z̄k), wk
i � 0, i ∈ I 2(z̄k)∪ I 3(z̄k) when k is suffi-

ciently large, we deduce that i∗ /∈ I 1(z̄k) ∪ I 2(z̄k) ∪ I 3(z̄k). Consequently, we
must have i∗ ∈ I c(z̄k). This combined with (13) and (22) yields

v̄i∗ = limk→+∞ Hi∗(z̄k)
(
yk

i∗ + rkGi∗(z̄k)Hi∗(z̄k)
)
>0,

w̄i∗ = limk→+∞ Gi∗(z̄k)
(
yk

i∗ + rkGi∗(z̄k)Hi∗(z̄k)
)
>0.

(26)

In particular, we should have

lim
k→+∞

(
yk

i∗ + rkGi∗(z̄k)Hi∗(z̄k)
)=+∞. (27)

By the second-order necessary condition of (P (yk, rk)) at z̄k and (13), we
see that for any d satisfying

�Gi(z̄k)
T d =0, i ∈ I 1(z̄k),

�Hi(z̄k)
T d =0, i ∈ I 2(z̄k),

�Gi(z̄k)
T d =0, i ∈ I 3(z̄k),

�Hi(z̄k)
T d =0, i ∈ I 3(z̄k),

�gj (z̄k)
T d =0, j ∈J1(z̄k)∪J2, (28)
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there holds

dT �2 f (z̄k)d +
p∑

i=1

(
v̄k

i d
T �2 Gi(z̄k)d + w̄k

i d
T �2 Hi(z̄k)d

)

+
∑

j∈J1(z̄)∪J2

µjd
T �2 gj (z̄)d

+2
∑

i∈I c(z̄k)\{i∗}
(yk

i + rkGi(z̄k)Hi(z̄k))(�Gi(z̄k)d)(�Hi(z̄k)d)

+rk

∑

i∈I c(z̄k)\{i∗}
[Hi(z̄k)(�Gi(z̄k)d)+Gi(z̄k)(�Hi(z̄k)d)]2

+2(yk
i∗ + rkGi∗(z̄k)Hi∗(z̄k))(�Gi∗(z̄k)d)(�Hi∗(z̄k)d)

+rk [Hi∗(z̄k)(�Gi∗(z̄k)d)+Gi∗(z̄k)(�Hi∗(z̄k)d)]2 �0. (29)

By the LICQ of MPCC at z̄ and the fact that z̄k → z̄, we can choose {dk}⊆
Rn such that {dk} is bounded and

�Gi∗(z̄k)
T dk = Gi∗(z̄k)

Gi∗(z̄k)+Hi∗(z̄k)
,

�Hi∗(z̄k)
T dk =− Hi∗(z̄k)

Gi∗(z̄k)+Hi∗(z̄k)
,

�Gi(z̄k)
T dk =�Hi(z̄k)dk =0, i ∈ [

I 3(z̄)∩ I c(z̄k)
]\{i∗},

�Gi(z̄k)
T dk =0, i ∈ I c(z̄k)∩ I 1(z̄k),

�Hi(z̄k)
T dk =0, i ∈ I c(z̄k)∩ I 2(z̄k),

�Gi(z̄k)
T dk =0, i ∈ I 1(z̄k)∩ I 3(z̄k),

�Hi(z̄k)
T dk =0, i ∈ I 2(z̄k)∩ I 3(z̄k),

�gj (z̄k)
T dk =0, j ∈J1(z̄k)∪J2. (30)

Note that each dk satisfying (30) meets (28). Substituting (30) into (29)
(with d replaced by dk), we obtain

dT
k �2 f (z̄k)dk +

p∑

i=1

(
v̄k

i d
T
k �2 Gi(z̄k)dk + w̄k

i d
T
k �2 Hi(z̄k)dk

)

+
∑

j∈J1(z̄)∪J2

µjd
T
k �2 gj (z̄)dk

+rk

∑

i∈I c(z̄k)∩I 1(z̄k)

G2
i (z̄k)

(�Hi(z̄k)
T dk

)2
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+rk

∑

i∈I c(z̄k)∩I 2(z̄k)

H 2
i (z̄k)

(�Gi(z̄k)
T dk

)2

−2(yk
i∗ + rkGi∗(z̄k)Hi∗(z̄k))

Gi∗(z̄k)Hi∗(z̄k)

(Gi∗(z̄k)+Hi∗(z̄k))
2 �0. (31)

Due to (13), (22) and the boundedness of {yk}, it is easily checked
that the sequences {rkG

2
i (z̄k) (�Hi(z̄k)dk)

2} and {rkH
2
i (z̄k) (�Gi(z̄k)dk)

2} are
bounded. As a result, all the terms except the last one on the left-hand side
of (31) are bounded as k→+∞. Moreover, applying (13) and (22), we have

lim
k→+∞

Gi∗(z̄k)Hi∗(z̄k)

(Gi∗(z̄k)+Hi∗(z̄k))
2

= lim
k→+∞

[
Gi∗(z̄k)(y

k
i∗ + rkGi∗(z̄k)Hi∗(z̄k))

] [
Hi∗(z̄k)(y

k
i∗ + rkGi∗(z̄k)Hi∗(z̄k))

]

[
Gi∗(z̄k)(y

k
i∗ + rkGi∗(z̄k)Hi∗(z̄k))+Hi∗(z̄k)(y

k
i∗ + rkGi∗(z̄k)Hi∗(z̄k))

]2

= v̄i∗w̄i∗

(v̄i∗ + w̄i∗)
2 >0.

This together with (27) implies that the last term on the left-hand side of
(31) tends to −∞ as k →+∞. It follows that the inequality (31) is impos-
sible as k →+∞. So we must have v̄i �0, w̄i �0,∀i ∈ I 3(z̄).

Finally, we prove that z̄ satisfies the second-order necessary optimality
condition of MPCC.

Suppose that d ∈Rn satisfies (3). Note that

�Gi(z̄k)→�Gi(z̄), i ∈ [
I c(z̄k)∪ I 1(z̄k)

]∩ I 1(z̄),

�Hi(z̄k)→�Hi(z̄), i ∈ [
I c(z̄k)∪ I 2(z̄k)

]∩ I 2(z̄),

�Gi(z̄k)→�Gi(z̄), i ∈ [
I 1(z̄k)∪ I 2(z̄k)∪ I 3(z̄k)

]∩ I 3(z̄),

�Hi(z̄k)→�Hi(z̄), i ∈ [
I 1(z̄k)∪ I 2(z̄k)∪ I 3(z̄k)

]∩ I 3(z̄),

�Gi(z̄k)→�Gi(z̄), �Hi(z̄k)→�Hi(z̄), i ∈ I c(z̄k)∩ I 3(z̄),

�gj (z̄k)→�gj (z̄), j ∈J1(z̄)∪J2.

Note also that when k is sufficiently large, we have

I 1(z̄)⊆ I 1(z̄k)∩ I c(z̄k),

I 2(z̄)⊆ I 2(z̄k)∩ I c(z̄k).

By the LICQ of MPCC at z̄ and Lemma 3.1, we can find {dk}⊆Rn such
that

(i) dk →d;
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(ii)

�Gi(z̄k)
T dk =0, i ∈ [

I c(z̄k)∪ I 1(z̄k)
]∩ I 1(z̄),

�Hi(z̄k)
T dk =0, i ∈ [

I c(z̄k)∪ I 2(z̄k)
]∩ I 2(z̄),

�Gi(z̄k)
T dk =�HT

i (z̄k)dk =0,

i ∈ [
I c(z̄k)∪ (

I 1(z̄k)∪ I 2(z̄k)∪ I 3(z̄k)
)]∩ I 3(z̄),

�gj (z̄k)
T dk =0, j ∈J1(z̄)∪J2. (32)

It is clear that any dk satisfying (32) also satisfies (28) (with d replaced by
dk). Substituting (32) into (29) (with d replaced by dk), we get

dT
k �2 f (z̄k)dk+

p∑

i=1

(
v̄k

i d
T
k �2 Gi(z̄k)dk + w̄k

i d
T
k �2 Hi(z̄k)dk

)

+
∑

j∈J1(z̄)
⋃

J2

µjd
T
k �2 gj (z̄)dk

+rk

∑

i∈I c(z̄k)
⋂

I 1(z̄)

G2
i (z̄k)

(�Hi(z̄k)
T dk

)2

+rk

∑

i∈I c(z̄k)
⋂

I 2(z̄)

H 2
i (z̄k)

(�Gi(z̄k)
T dk

)2 �0. (33)

Moreover, from (13), (22) and the boundedness of {yk}, we deduce that

lim
k→+∞

rkG
2
i (z̄k)

= lim
k→+∞

rkG
2
i (z̄k)Hi(z̄k)

Hi(z̄k)

= lim
k→+∞

Gi(z̄k)y
k
i + rkG

2
i (z̄k)Hi(z̄k)

Hi(z̄k)

=0, i ∈ I c(z̄k)∩ I 1(z̄).

It follows that

lim
k→+∞

rkG
2
i (z̄k)(�Hi(z̄k)

T dk)=0, i ∈ I c(z̄k)∩ I 1(z̄). (34)

Analogously, we have

lim
k→+∞

rkH
2
i (z̄k)(�Gi(z̄k)

T dk)=0, i ∈ I c(z̄k)∩ I 2(z̄). (35)

Taking the limit in (33) while noticing (22), (34) and (35), we see that (4)
holds. The proof is complete.
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Remark 3.1. Recently, Lin and Fukushima ([17]) showed that a weaker
condition than the usually used second-order necessary condition of the
corresponding subproblems involved in the respective methods (see, e.g.
[10,13,14,24]) (together with a set of other conditions) can guarantee their
scheme to a B-stationary point. This condition is described by the uniform
lower boundedness of the Lagrangian functions of their relaxed problems
on some tangent space. One can see from the proof of the first part (con-
vergence to a strongly stationary point) of Theorem 3.2 that the assump-
tion of second-order necessary condition of (P (yk, rk)) at z̄k can also be
replaced by a weaker condition similar to the one used in [17]: there exists
α>0 such that for any d satisfying (28), (29) holds with its right-hand side
replaced by −αdT d.

4. Numerical Experiments

First, we state the detailed procedures of the partial augmented Lagrangian
method as follows.

ALGORITHM.

Step 1. Set β >1, 0<γ <1.
Step 2. Initialize the penalty parameter r > 0, the multiplier y ∈Rp and

the starting point z0.
Step 3. Solve the problem (P (y, r)) with the starting point z0 by some

method for ordinary constrained optimization problems and obtain a solu-
tion z̄. If the value of the term

max
{
|Gi(z̄)Hi(z̄)|, (−Gi(z̄))

+, (−Hi(z̄))
+, i =1, . . . , p, g+

j (z̄),

j ∈J1, |gj (z̄)|, j ∈J2
}

is small enough, where u+(z)=max{u(z),0}, then stop and z̄ is regarded as
an approximate optimal solution. Otherwise, go to Step 4.

Step 4. If
∑p

i=1 |Gi(z̄)Hi(z̄)|>γ
∑p

i=1 |Gi(z0)Hi(z0)|, then set r =βr, z0 =
z̄ and go to Step 3; otherwise, set yi =yi + rGi(z̄)Hi(z̄), i =1, . . . , p, z0 = z̄

and go to Step 3.

We tested the methods proposed in [10,13,14,24] and this paper for
MPCC on a number of problems. For the sake of convenience, we label
these methods as FP, S, HR, HYZ and HYT, respectively (taking the first
letter(s) of the author(s) of the corresponding method).

For all these methods, we use the starting point z0 = 0 and the starting
point for each of the subsequent subproblems is the solution of the last
solved subproblem (warm start). All the methods use the stop rule that the
constraint violation
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max
{
|Gi(z̄

k)Hi(z̄
k)|, (−Gi(z̄

k))+, (−Hi(z̄
k))+, i =1, . . . , p, g+

j (z̄k),

j ∈J1, |gj (z̄
k)|, j ∈J2

}

is less than 1.e−6 or it is hard to reduce the constraint violation, where k

is the index of the last problem solved. Each subproblem involved in these
methods is solved by directly invoking the MATLAB (Version 6.1) subrou-
tine (for constrained or unconstrained programs).

For the methods FP and S, we set the initial value of the parameter ε =
0.1 and the update rule is εk = εk−1/5.

For the method HR, at each outer iteration, we solve the following sub-
problem:

min f (z)+ r

m∑

i=1

Fi(z)Gi(z)

s.t. Gi(z)�0, Hi(z)�0, i =1, . . . , p,

gj (z)�0, j ∈J1,

gj (z)=0, j ∈J2,

where r >0 is the penalty parameter.
For both HR and HYZ, the initial value of the penalty parameter r is

1 and the update rule is rk =10rk−1.
For the method HYT, we take β = 10, γ = 0.25 as recommended in [2]

(for ordinary nonlinear programming). The initial multiplier y and initial
penalty parameter r are set to 0 and 1, respectively.

The numerical tests consist of three tests for observation of computa-
tional performances of these methods.

TEST I.

We implemented the five methods on Example 6.1 in [25] and Problems 1–
11 in [6], some of which are mathematical programs with nonlinear com-
plementarity constraints. All these five methods worked well on these test
problems. Some of the optimal values obtained by any one of these five
methods are even better than those obtained in [6,20,21].

TEST II.

All the test problems in Test I are small sized. In order to see computa-
tional performances of the five methods on larger scale problems, we used
some test problems from QPECgen developed by Jiang and Ralph (see
[16]). This package can generate random quadratic programs with linear
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complementarity constraints, which are special cases of MPCC. Specifically,
the following type of problems will be generated:

min f (x, y)=1/2(x, y)T P (x, y)+ cT x +dT y

s.t. F(x, y)=Nx +My +q �0,

y �0,

F T (x, y)y =0,

g(x, y)=A(x, y)+a �0,

where (x, y)∈Rn1+n2 , N ∈Rn2×n1 , M ∈Rn2×n1 , q ∈Rn2 , A∈Rl×(n1+n2), a ∈Rl.
x and y are called first level variable and second level variable, respec-

tively. Some of the QPECgen parameters [except the problem dimen-
sions (n1, n2,m) and the parameters seconddeg, mixdeg and monoM , which
will be specified below] are set as follows: qpectype = 300, p = l, condP =
100, scaleP = condP , convexf = 1, symmM = 1, condM = 200, scaleM = 200,
firstdeg = 2, toldeg = 1.e − 6, implicit = 1, randseed = 0, output = 1. Since we
set convexf =1, the problems we tested are convex quadratic programs with
linear complementarity constraints.

Dimensions of the problems we tested are: (8,10,4), (8,20,4), (8,30,4),
(8,40,4), (8,50,4), (8,60,4), (8,80,4), (8,90,4), (8,100,4), (8,150,4),
(8,200,4), (100,4,4), (150,4,4), (200,4,4), (100,10,4), (150,5,4).

Three groups of values for the parameters seconddeg, mixdeg and monoM

were used for each of the above problem:

(a) seconddeg =4, mixdeg =2, monoM =1;
(b) seconddeg =4, mixdeg =2, monoM =0;
(c) seconddeg =0, mixdeg =0, monoM =1.

We listed below the problems which the stated method “failed” to solve.
[The method failed to generate a feasible solution or the optimal value
obtained is much larger (usually more than 30%) than the one recom-
mended by the QPECgen.] In the following, we will use notations (a)–(c),
meaning parameter settings (a)–(c), respectively.

FP.

(a) (100,10,4), (150,4,4), (150,5,4);
(b) (8,40,4), (8,50,4), (8,60,4), (8,100,4), (8,150,4), (8,200,4),

(150,4,4), (200,4,4);
(c) (100,10,4).

S.

(a) (100,10,4), (150,5,4);
(b) (8,40,4), (8,60,4), (8,200,4), (150,4,4), (200,4,4), (150,5,4);
(c) (100,10,4).
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HR.

(a) none;
(b) (100,10,4);
(c) none.

HYZ.

(a) none;
(b) none;
(c) none.

[Only some optimal values obtained are larger but not much larger (usu-
ally no more than 5%) than the ones recommended by QPECgen.]

HYT.

(a) (8,50,4), (8,80,4), (8,90,4), (8,100,4), (8,150,4), (8,200,4);
(b) (8,80,4), (100,10,4);
(c) (8,40,4), (8,80,4), (8,90,4), (8,150,4), (8,200,4), (200,4,4).

It seems from Test II that

(i) HYT performs better FP and S for problems with parameter setting
(b).

(ii) For parameter setting (a), if the dimension of the second level var-
iable is slightly large (e.g. � 50), then HYT performs very poorly.
However, if the first level variable is slightly large and the second
level variable is small, it worked better. Meanwhile, FP and S may
perform poorly when the dimension of the first level variable is large.

(iii) For parameter setting (c), FP and S usually perform better than
HYT.

(iv) The methods HR and HYZ perform well on almost all the tested
problems.

One more thing that is worth mentioning is that augmented Lagrangian
method usually performs better than penalty methods in ordinary nonlinear
programming (see, e.g. [2]), whereas the partial augmented Lagrangian
method HYT seems to perform more poorly than the partial penalty method
HR when applied to MPCC. Up to now, we do not know the reason.

TEST III.

To further see the performances of the methods HR and HYZ, both of
which performed well in Test II, we tested the two methods on larger
QPEC problems. The notations and parameters were set as in Test II
unless stated otherwise.
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The dimensions of the tested problems are (58,50,4), (108,100,4),
(158,150,4), (208,200,4) with parameter settings (a)–(c) as in Test II.

The HR failed in problems (58,50,4), (158,150,4), (208,200,4) with
any one of the three parameter settings (a)–(c).

For each of these tested problems, HYZ succeeded in generating a solu-
tion whose optimal value is close to (no more than 5%) the recommended
one [except for the problem (158,150,4) with parameter settings (a) and
(c), the optimal values obtained are about 15% larger than the recom-
mended ones]. In addition, the CPU time consumed by HYZ is much
shorter than that of HR for every suceeded problem.

Finally, we note that we believe the numerical performances observed in
the above experiments can not completely reflect the advantages and dis-
advantages of each tested method since our tests are based on the direct
invoking of MATLAB subroutines to solve each subproblem involved
in the respective methods in spite of the fact that specific effective
and efficient methods might be designed to solve the respective
subproblems.
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